PRACTICE PROBLEMS FOR MIDTERM 2 MATH 430, SPRING 2014

Problem 1. Let $\mathfrak{A} = (\mathbb{R}; +, \cdot)$. Give a formula in the language of \mathfrak{A} which defines the following. (Here the language includes $+, \cdot, \forall, \exists$, variables, equality and logical connectives).

 $(a) \{0\}$

 $(b) \{1\}$

 $(c) \{3\}$

(d) the interval $(0,\infty)$

(e) $\{\langle r, s \rangle \mid r \leq s\}$ (here r, and s are reals of course)

Problem 2. Write a deduction from $\{\forall x Px, \forall x (Px \rightarrow Qx)\}$ to Qc. (Here c is a constant symbol, and P and Q are one-place predicates). Note that you should not just prove that such a deduction exists, but actually write out the entire deduction.

For the next problem you can use the theorem that if c is a constant symbol that does not appear in Γ , ϕ or ψ and $\Gamma \cup \{\phi_c^x\} \vdash \psi$, then $\Gamma \cup \{\exists x\phi\} \vdash \psi$ (Rule EI on page 124).

Problem 3. Show that:

 $\begin{array}{l} (a) \ \forall x(\alpha \to \beta) \vdash (\exists x \alpha \to \exists x \beta) \\ (b) \vdash \exists x(Py \land Qx) \leftrightarrow (Py \land \exists xQx). \end{array}$

(*Hint: show that* $\exists x(Py \land Qx) \vdash (Py \land \exists xQx)$ and $(Py \land \exists xQx) \vdash \exists x(Py \land Qx)$ and then use the Deduction theorem and Rule T).

Problem 4. Show that if x does not occur free in any formula in Γ , then the set $S = \{\phi \mid \Gamma \vdash \forall x\phi\}$ is closed under modus ponens (i.e. whenever ϕ_1 and $\phi_1 \rightarrow \phi_2$ are both in S, then so is ϕ_2).

Problem 5. Suppose Γ is a consistent set of formulas. Show that Γ can be extended to a consistent Δ such that for every formula ϕ , either $\phi \in \Delta$ or $\neg \phi \in \Delta$.

Problem 6. Suppose Γ is a consistent set of formulas such that for every formula ϕ , either $\phi \in \Gamma$ or $\neg \phi \in \Gamma$ (i.e. Γ is complete). Define a relation E on the set of terms by

$$t_1 E t_2 \ iff \ "t_1 = t_2" \in \Gamma.$$

Prove that E is an equivalence relation (i.e. that E is reflexive, symmetric, and transitive).

Here you can use without proof that: $\vdash \forall x \forall y (x = y \rightarrow y = x)$ and $\vdash \forall x \forall y \forall z (x = y \rightarrow y = z \rightarrow x = z)$. (Both can be obtained using generalizations and the equality axioms).

Problem 7. The soundness theorem says that:

(a) If $\Gamma \vdash \phi$, then $\Gamma \models \phi$.

 $\mathbf{2}$

(b) If Γ is satisfiable (i.e. some model $\mathfrak{A} \models \Gamma$), then Γ is consistent. Show that the two statements are equivalent.

Problem 8. The completeness theorem says that:

(a) If $\Gamma \models \phi$, then $\Gamma \vdash \phi$.

(b) If Γ is consistent, then Γ is satisfiable. Show that the two statements are equivalent.

Problem 9. The compactness theorem says that:

(a) If $\Gamma \models \phi$, then for some finite $\Delta \subset \Gamma$, $\Delta \models \phi$.

(b) If every finite subset of Γ is satisfiable, then so is Γ .

- (1) Show that the two statements are equivalent.
- (2) Prove the compactness from the completeness theorem
- **Problem 10.** (1) Write a formula λ (in the language of equality) such that for every model \mathfrak{A} , $\mathfrak{A} \models \lambda$ iff the universe of \mathfrak{A} has at least 3 elements.
 - (2) Show that there is a set of sentences Σ such that for every model \mathfrak{A} , $\mathfrak{A} \models \lambda$ iff \mathfrak{A} is infinite.
 - (3) Let Γ be a set of formulas and suppose Γ has arbitrarily large models.
 I.e. for every k there is a model with at least k elements that satisfies
 Γ. Use compactness to show that Γ has an infinite model.

Problem 11. (1) Show that for any model \mathfrak{A} , $Th(\mathfrak{A})$ is complete.

(2) Let \mathcal{K} be the collection of all groups. Show that $Th(\mathcal{K})$ is not complete.

Problem 12. Let $\mathfrak{A} = (\mathbb{N}, 0, S, <)$. Construct a countable model \mathfrak{B} , such that $\mathfrak{A} \equiv \mathfrak{B}$, but $\mathfrak{A} \not\cong \mathfrak{B}$.